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Singular hypersurfaces in the Brans-Dicke theory of gravity 

Kevin G Sufferni 
School of Mathematics and Physics, Macquarie University, North Ryde, NSW 21 13, 
Australia 

Received 23 March 1981, in final form 27 November 1981 

Abstract. Junction conditions are formulated in an invariant manner for the jumps in the 
gravitational and scalar fields across a singular time-like hypersurface in the Brans-Dicke 
theory of gravity. The equations of motion for singular hypersurfaces are also derived, 
and an exact solution of the Brans-Dicke field equations is presented which represents a 
static spherical shell of perfect fluid. 

1. introduction 

Gravitational junction conditions for singular hypersurfaces in general relativity were 
originally formulated by Lanczos (1922, 1924). A formulation in terms of extrinsic 
and intrinsic curvature was developed by Darmois (1927), Misner and Sharp (1964), 
and Israel (1966, 1967a) who expressed the junction conditions in an invariant form. 
The charged case was then treated by Kuchai (1968). 

We consider here junction conditions for singular time-like hypersurfaces in the 
Brans-Dicke theory of gravity, but restrict our attention to uncharged hypersurfaces 
in vacuum. Recent observations limit the Dicke coupling constant w to values greater 
than w = 500 (Reasenberg er a1 1979), so that Brans-Dicke theory today is very much 
the ‘large-w version’ discussed by Thorne and Dykla (1971). When w is large enough 
for the scalar field to be treated as a perturbation, Thorne and Dykla proved (using 
Price’s (1972) analysis) that, when a non-rotating star collapses, all the scalar field is 
radiated away leaving a Schwarzschild black hole. This, however, does not answer 
the question of what happens to a collapsing star with an arbitrarily strong scalar 
field. Is all the scalar field radiated away in this case too? It probably is, but no 
successful numerical calculations of such a collapse have been performed, and the 
answer, in spite of the above observational limits on w, is still of theoretical interest. 
The same applies to the junction conditions themselves and the study of singular 
hypersurfaces in Brans-Dicke theory. One way of seeing if all the scalar field is 
radiated away during collapse would be to study numerically the collapse of a neutron 
star in Brans-Dicke theory, but a previous attempt at this problem (Matsuda and 
Nariai 1973) proved inconclusive because of numerical difficulties encountered during 
the latter stages of collapse. 

In general relativity the study of the dynamics of collapsing spherical shells by 
Israel (1967b), De la Cruz and Israel (1967), Papapetrou and Hamoui (1968) and 
Chase (1972) led to important physical insights about the collapse process. This was 
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accomplished with a minimum of effort because shells are simpler to deal with than 
whole stars. This is particularly true for spherical shells of dust where the equation 
of motion can be solved analytically (Israel 1967b). In the Brans-Dicke theory 
spherical shells of dust should again provide the simplest situation in which to analyse 
collapse, and consequently one of the aims of the present work is to derive the 
equations of motion of singular hypersurfaces in Brans-Dicke theory. The emission 
of scalar gravitational radiation means that the study of collapsing shells of dust, even 
in the case of spherical symmetry, is far from trivial, and an analytic solution is 
probably not possible. Because of the added complexity of the scalar radiation, we 
do not consider the problem of collapse in this paper, but content ourselves with 
deriving the equations of motion. 

In 0 2 singular hypersurfaces are defined and the junction conditions are derived 
for the scalar and gravitational fields. The equations of motion of singular hypersur- 
faces are derived in 0 3, and finally a simple application of the formulae of 0 2 appears 
in 0 4 where a solution is discussed that represents a static spherical shell of perfect fluid. 

2. Singular hypersurfaces in the Brans-Dicke theory 

2.1. Definition of singular hypersurfaces 

A time-like singular hypersurface Z in vacuum is the history of an infinitely thin layer 
of matter, which may be regarded as the limit as E + 0 of a layer of finite thickness 
2 ~ .  For such a finite-thickness layer in vacuum with stress-energy tensor (4)T00 the 
surface stress-energy tensor is defined as 

Here n is proper distance measured perpendicular to Z, and Z is at n = 0 (see e.g. 
Israel 1966, Misner et a1 1973). We may alternatively regard (4)Tuo as developing a 
delta function in the limit E + 0, so that formally 

which is consistent with (1) (Papapetrou and Hamoui 1968). 
The three-dimensional surface stress-energy tensor Sa6 (where latin indices label 

the intrinsic coordinates 6") is now defined to be the projection of Sap onto Z in the 
manner described by Kuchai (1968). The only non-vanishing tetrad component of 
Suo is 

s a 6  = Suoe(a)Oe(b)P 
where e(,)" is a time-like tangent vector. The trace S of Sap can be defined by 
S = ga5Smo or by 

S = lim (4)T dn. (3) 

2.2. Brans-Dicke field equations and junction conditions for the scalar field 

The field equations of Brans and Dicke (1961) are 

Goo = RuO - ig,BR = - 8 ~ 4 - l  Tup - suo. (4) 
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Here 

@up = 6J4-2(4,a4,i3 -~gap4.,4~')+4-1(vp4.0 - g a p 0 4 )  ( 5 )  

and the source of the scalar field 4 is the trace of the stress-energy tensor through 
the wave equation 

where 

El4 = guBvB4., = V"V"4 

and V u  is the four-dimensional covariant derivative. 
We consider in this section how 4 and its normal derivative change across E. The 

scalar field itself must be continuous across 2, otherwise its value in Z cannot be 
defined uniquely. In addition, if 4 suffered, for example, a step discontinuity across 
X, its derivative in the direction normal to X would contain a delta function at I; and 
the right-hand side of equation (6) would have to contain the derivative of a delta 
function. This is not the case, however, because from equation (2) (4)T contains only 
a delta function, not the derivative of a delta function. We thus take 

[dl = 0 (7) 

as the junction condition for 4 where [4] denotes the jump in 4 across I;. 
The normal derivative of 4, defined by 

4 , n  = 4.an" 
where n u  is the space-like normal vector to 2, does suffer a discontinuity across E, 
as follows from the wave equation (6). To calculate this discontinuitystart byevaluating 
the tetrad components of V&," which appear in 04. These are obtained by decompos- 
ing 4," as 

(8) 4." = 4.nno + 4 ,ae (a )a  
(cf Kuchai 1968) where 

4 , a  = 4.ae(a)a.  
Next operate on ( 8 )  with V B  to obtain 

v B ~ , "  = (VB4,n)na + 4 . n ( V p n a )  + (Vo4 ,a )e (a )a  + 4.aVpe(a)a  

V B 4 . n  = 4 , n n n p  + 4,nae'"'B 

(9) 

and further expand 

(10) 

and 
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and 

(13) 
Note that expressions (12) and (13) for dTna and 4,,, are not equivalent since second- 
order tetrad derivatives do not in general commute. These expressions do, however, 
separate naturally into a term that is symmetric in a and n, denoted by and 
terms that are antisymmetric in a and n, denoted by 4.1~~1 and We thus write 
the derivatives (12) and (13) in the form 

(14) 

P 4.an = (4 ,a) .pn * 

4 . a n  = 4 , i n a )  + # , [ a n  I 

and 
- 

4 , n a  = 4 . i n a )  + 4 . r n a l  

where, since and 4,,, are scalars, 

Here Kab is the extrinsic curvature three-tensor of Z (Israel 1966). 
Now consider the tetrad components of Vpnu.  It can be shown that 

(17) i a )  i h )  Vpna=Jabe ,e p 

where 

(18) 

is the only non-vanishing tetrad component. We can project V p e ( a ) u  in a similar 
manner to obtain 

(19) 

B 
Jab = ( V ~ n ~ ) e ( a ) " e ( b )  

V p e i a ' ,  = Labe'h'unp - Kacnae"'p +TEce ( 6 )  ae i c )  

where 

Lab = ( ~ ~ e ~ ~ ) ~ ) e ~ b ) ~ n ~  

and rzc are the three-dimensional Christoffel symbols of Z (Israel 1966). 

the tetrad components of V & J , ~  in the form 

V&,a = d,nnnunp + 4,ina)e 
Next contract equation (20) with g"' to obtain 

Now substitute equations (10)-(12) and (15)-(19) into the expression (9) to obtain 

p + ( K a b 4 . n  + 4 . a 6  f r k $ . c ) e ( a ) l r e ' b ) p .  (20) ( a )  ( a )  
d 4  +cb.cna)nae 

0 4  = 4.n" + X (21) 

where 

(22) 

The jump in the normal derivative of 4 across Z is now obtained by integrating 
equation (6) through a layer of finite thickness 2~ with the expression (21) used on 
the left-hand side and the right-hand side evaluated by the limit (19). The integral 

(31 a h  X = K4.n + g (4.06 r & d . c ) *  
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of X will vanish in the limit E + 0 because the continuity of '$ across X guarantees 
that 4," does not contain a delta function. This leaves 

S 
877 

[ 4 . n l =  

as the junction condition for 4,,. 

2.3. Generalised Lanctos equations 

In general relativity the jumps across Z in the components of the extrinsic curvature 
Kab are given by the Lanczos equations 

(24) 1 [KabI ?ab = -8v(sab - ? g a b s )  

(Israel 1966). We derive in this section the generalisation of equations (25) to the 
Brans-Dicke theory. 

The field equations (4) and (5) can be written in the alternative form 

and at this point it is most convenient to work in Gaussian-normal coordinates (Synge 
1960) because they greatly simplify the calculations. In these coordinates the com- 
ponents of equations (25) that are tangent to Z become 

Rab =(3)Rab +Kab.n +KKab-2K,'Kc-. (4) 

This expression can be combined with equations (a), (20) and (24) to produce 

where 

Yah = '31Rab + KKab - 2Ka'Kcd - w'$"'$,a'$.b - 4-l ('$.ab + r:b'$*c -Kab'$.n ). 

We now integrate equation (26) through a layer of finite thickness 2.5 and take the 
limit E + 0. Since the integral of Yab vanishes when E + 0, we are left with 

which is the required generalisation of the Lanczos equations. In the limit w + 03 

equations (27) reduce to equations (24) since in this limit '$-'+ 1. Although Gaussian- 
normal coordinates were used to derive equations (27), they are invariant under 
general coordinate transformations since they contain only tetrad components. An 
alternative form for these equations is 
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so that 

a relation that is required in the following section. 

2.4. Junction conditions for the gravitational field 

We begin by projecting the scalar field stress-energy tensor Qa5 (equation ( 5 ) )  into 
directions normal and tangential to X to obtain 

(29) O n n  = f W 4 - * ( 4 ? n  -4*a4.a) + 4 - ' 4 , n n  
and 

@an = W 4 - 2 4 . a 4 . n  + 4 - ' 4 , ( n a ) *  (30) 

Outside the hypersurface the Brans-Dicke field equations hold with Ta5 = 0, so 
that on each side of Z 

G:D = -@&. 
The tetrad components of these equations, when combined with the Gauss-Codassi 
equations (Israel 1966), give 

G:n = K $  - K :  =-@Z (31) 

and 

-2G:, = ( 3 ' R  + K :  - K,'&zb = Otn. (32) 

Before we can obtain the junction conditions by adding and subtracting the pairs 
of equations (31) and (32), we need to calculate the jumps across X in the tetrad 
components @an and ann. The evaluation of [aan] entails the evaluation of 
a task that can be accomplished by using equation (23). The derivative with respect 
to 6" of this equation is 

It then follows from equations (15) and (17) that 

4 , n a  = 4 . ( n a ) - K a b 4 , b  

which can then be combined with equations (27) and (33) to give 

Consequently, the jump in is 

We next consider the expression for [Onn3. This involves the derivation of [c$.,,~], 
a task that is not so straightforward as the derivation of (34) because it involves the 
second derivative with respect to n .  In this case one is not at liberty to differentiate 
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equation (23) with respect to n because the direction n has no meaning for the strictly 
three-dimensional quantity S = '3'S(5a). Instead, we must return to the four- 
dimensional wave equation (6) and differentiate it with respect to n, using the 
expressions (21) and (22) for the left-hand side. This gives 

As before, we integrate equation (36) through a layer of finite thickness and let the 
thickness vanish to obtain 

The integral in this equation vanishes in the limit E + O  because (4)T+6(n)'3'S as 
E + 0, with the result that the integrand is proportional to the derivative of a delta 
function. Consequently, equation (37) reduces to 

S 2  4-'s& -- 
8 .nw 8.n 

2 0  + 3  [ 4 , n n  1 = -- 2w+3 (38) 

which is the desired expression for [ 4 , n n ] .  Here A denotes the mean value of the 
variable A across 2. Note that the terms on the right-hand side of equation (38) 
would have been lost if we had simply differentiated equation (23) with respect to n. 
It now follows readily that 

The mean values of cPan and cPnn follow in a similar manner from equations (29) 

&an = w4-24 ,a&.n  + 4 - ' & . ( n a )  (40) 

and (30), and we obtain 

and 

The conservation equations and the junction conditions for the gravitational field 
can now be obtained by combining equations (31) and (32) with equations (35) and 
(39)-(41). There results 

S a b ; b  = 0 (42) 

(43) 2 . a  - k a b : b  = - w 6 ' 4 , a & , n  - 6 ' & . ( n a )  

and 
€ l a b s a b  = 0. (45) 

We now discuss the meaning of the above junction conditions. Equation (42) 
expresses the energy-momentum balance in the shell and is identical to the equation 
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obtained by Israel (1966) in general relativity, because in the Brans-Dicke theory 
there is no direct coupling between matter and the scalar field. The interaction between 
these two quantities is only an indirect one; the presence of matter and the scalar 
field combine to determine the geometry, which in turn acts upon the matter. The 
effect of the scalar field on the geometry can be seen explicitly in equations (43) and 
(44). Equation (43) shows how the scalar field affects the mean value of the extrinsic 
curvature i a b  of the shell, while equation (44) shows the combined effect of the surface 
distribution of matter Sa6 in the shell and the scalar field on the shell's extrinsic 
curvature and the intrinsic curvature (3)Z?. 

Equation (45) is identical to the general relativity result (Israel 1966) where the 
left-hand side represents the mean value of the normal force acting on the shell, i.e. 

~ 

n,VpSQP = -&,Sa' = 0. 

In addition, the jump in the force is given by 

The tangential component of the force acting on the shell is 
a6 e("),VpSu' = -S ;b 

which can be combined with the conservation equation (42) to give 

[ e ' a ) , ~ , ~ a P ]  = o 
and 

e'a 'aVPSu8 = 0. 

These are identical to the general relativity results (Israel 1966). 

3. Equations of motion 

The equations of motion for singular hypersurfaces follow directly from the junction 
conditions (27), (42) and (45) once the intrinsic stress-energy tensor Sab is specified. 
For simplicity we assume the hypersurface consists of a perfect fluid with 

s a 6  = ( p + u ) U a U b f p g a b  (46) 

where p is the surface pressure, U is the surface density of mass-energy and U, is the 
three-velocity of the matter comprising the hypersurface. As a consequence of 
equation (461, 

s = 2p -U. (47) 

The equation of motion can be derived in a manner analogous to that used by 
Kuchai (1968) for charged shells in general relativity. Kuchai examined the 
four-accelerations of an element of fluid in the shell as observed from the surrounding 
regions V' of space-time and derived the following expressions for the tangential 
and normal acceleration components: 
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and 

Here T denotes the proper time of ideal clocks moving with the element and U" is 
the four-dimensional extension of U" as defined by Israel (1966). Equations (48) and 
(49) hold in the Brans-Dicke theory as well as in general relativity because they follow 
directly from equation (42) and 

(Israel 1966). As Kuchai points out, equation (48) describes for observers in V* 
how matter in the shell streams within the shell itself, and thus makes no reference 
to changes in the shape or size of the shell. It is the normal components (49) that 
refer to changes in shape and size, and these are the equations that are required to 
analyse the dynamics of hypersurfaces. We thus add and subtract the pairs of equations 
(49) and combine them with equations (27), (44) and (46) to obtain the equations of 
motion in the form 

and 

Equation (51) is identical to the general relativity equation, and in the limit w +cc 
equation (50) reduces to 

[nu%] =87r(p+ia) 1 

as given by Kuchai (1968). 

of motion reduce to 
For a hypersurface which consists of incoherent dust, p = 0 and the above equations 

DU" 87r(w+2) 
nu---- = f#J-'u [ DT 1 2w+3 

- 0. 
D U" 

n u - -  
DT (53) 

In general relativity equations (52 )  and (53) were written out explicitly and solved 
analytically for a spherical shell of dust by Israel (1966, 1967b). The absence of 
gravitational radiation during spherical collapse makes the study of the collapse and 
dynamics of spherical shells a relatively simple matter in general relativity, a situation 
which does not extend to the Brans-Dicke theory because of the presence of the 
scalar field. In this case equations (52) and (53) must be solved in conjunction with 
the four-dimensional wave equation 

0 4 = 0  (54) 
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and the field equations 

which hold in V'. Although a spherical shell in general relativity moves in a 
Schwarzschild background (with space-time Minkowskian in the interior of the shell), 
the background geometry through which a spherical shell moves in the Brans-Dicke 
theory is an unknown dynamic entity. This must be determined from equations (54) 
and ( 5 5 ) ,  and the necessity to do so considerably complicates the analysis. In spite 
of this, the analysis of a collapsing shell is still simpler to handle than the collapse of 
a neutron star, and there is a good chance that the fate of the scalar field during the 
collapse will be able to be followed numerically when this problem is analysed in detail. 

We reserve a discussion of this problem for a later publication, but as a simple 
application of the formulae presented in § 2, the following section considers the 
structure of a static spherical shell. 

4. Static spherical shell 

The simplest application of the formulae presented in § 2 is to calculate the structure 
of a static spherical shell of perfect fluid. We take V* to be the exterior of the shell 
X with coordinates x,+ = ( t ,  r, 8, cp); V -  is then the interior of the shell (the four- 
dimensional space-time enclosed by the shell) with coordinates x,- = (T,  r, 8, cp), and 
as intrinsic coordinates we take 6" = (7, 8, cp). 

In V' the line element in isotropic form is 

ds2 = -e2" dt2 + e2'(dr2 + r 2  de2 + r2 sin' 8 dq2)  (56) 

and the appropriate solution of the field equations (56) is the Brans type I metric 
- 1 / A  e" = e'['( -) 1 - B/r  

1 + B/r 

and 

(Brans and Dicke 1961, Brans 1962). Here 

A =[(A+1)2-A(1 -&JA)]"' 

(57) 

(59) 

and vO, Po, B and A are constants. Asymptotic flatness requires vo = PO = 0 and 

B = MA12 (60) 

where M is the total mass-energy of the shell (Salmona 1967). Of the constants that 
appear in expressions (57) and (58) it is only A that remains to be determined. 

In the interior of Z space-time is Minkowskian, as it is in general relativity, because 
a singularity exists at the origin unless the scalar field 4 is constant in the interior 
(Lightman er a1 1975, problem 16.5). When the scalar field is constant, the field 
equations reduce to those of general relativity, for which the only solution regular at 
the origin is flat space-time. The interior line element is thus taken to be 

d s 2 =  -dT2+dr2+r2(d82+sin2 8 dcp2). 
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For the coordinate radius of the shell we take r = R- as measured in V -  and r = R+ 
as measured in V'. It is not necessary that R- = R+ or that T = t, since the coordinate 
patches in V* need not join smoothly across 2. 

The triad of vectors e;',)= tangent to the shell are 

e&= = [(-g&)-'", 0,0,01 

e h a  = (O,O, 1,O) 

e;)'' = (o,o, 0,1)  

and 

and in addition the unit normal vector is 
-112 n* = (0, g,, ,O,  0) .  

The intrinsic metric induced in I: is 

ds2 = -dT2 + R+2e28*(d82 + sin2 8 dq2)  

where 

Since the two four-dimensional metrics gi8 both induce the same intrinsic metric in 
I:, the coordinate radii R- and R+ are related by 

R- = R+eP+. 

In  V' the solution to equation (54)  for the scalar field is 

2 w + 4  1 - B f r  A / r  &ex') - 
2 w + 3  0 l + B / r  (61)  

(Brans and Dicke 1961, Brans 1962). The constant value &, of the scalar field in 
V -  then follows from the junction condition (7) as 

The jump in the normal derivative of 4 across I: which is given by the junction 
condition (23)  can be used to obtain the following relation between the parameters 
of the shell and S :  

We now calculate the jump in the components of the extrinsic curvature Kab, and 
the results are 
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and 
2 y,, = sin 8 yee. 

All other components are zero, and in addition 

It now follows from the Lanczos equations in the form ( 2 8 )  that the non-vanishing 
components of the surface stress-energy tensor can be expressed in terms of the 
parameters of the shell as 

(w  + 2)BR+’ 
2 r w ( 2 w  + 3)A 

s, = [ 2 A ( w + l ) + 2 ~ + 1 + 2 ( w + l ) B A ]  

See = - (w  + 2 ) B  [ (Aw+2A+1”++(w+2)BA] (R++B)L ’A(R+-B) - ’ ’A  
2 r w ( 2 w  +3)AR+ 

and 
2 S,, = sin 8 Sea. 

The discussion so far has been general in that no mention has been made of the 
nature of the material comprising the shell. In order to make further progress this 
must be specified and for simplicity we assume again that the matter is a perfect fluid 
with stress-energy tensor (46) .  For a static spherical shell U, has components U, = 
(1,0, 0) so that the components of Sab are 

and 
s,, = U 

2 l A + A + 1  ) / A  (R+ _ ~ ) 2 ( A - A - l i l A  see = R+-’(R+ + B )  Pa 
The simplest way to derive expressions for p and cr is to use equations ( 4 7 )  and (63 )  
in combination with equation (64 )  and the ~7 component of equations ( 2 8 ) :  

The results are 
B ( o ~ A + 2 A + l ) ( w + 2 ) R + ~  i 2 A  +2A+ 1 ) / A  (R+ - B )  - ( 2 A  - Z A - l ) / A  (R+ + 8)-  4 r ( 2 w  + l ) A  p =  

B ( l  - w A  - A ) ( w  + 2 ) R  (R+ + B ) - ( ~ A  + 2 A + l  i / A  (R+ - B )  - i2A - 2 A - l ) l h  U =  
27r(2w +3)A 

The solution of the Brans-Dicke field equations that represents a static spherical 
shell of perfect fluid with a specified total mass-energy M and exterior coordinate 
radius R+ will now be completely determined once the remaining unknown constant 
A is found. A follows most readily by combining expressions (65)-(67) with the 88 
component of equations (27 ) :  
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It is found that A satisfies the quadratic equation 

a ( w  +2)A2 - (w + 2  -2a)A + 2a - 1 = 0 

where a = M/2R,. The appropriate root here for A is 

+- 1 -  1-4a2- A = - -  
2" +32) 1121 w + 2  2a [ ( ( w + 2 )  

because this expression reduces to the weak-field limit 

when a << 1 (Brans and Dicke 1961). Note that expressions (58)-(63) and (67)-(69), 
which are the complete solution for the static spherical shell, depend only on the 
single parameter a. 

We now discuss some of the physical properties of this solution with particular 
emphasis on the limits that must be placed on a. One limit is obtained from expression 
(68) for A, which is only real when 

w+2 
=a1(w). 

2(2w + 3 p 2  - a s  

It is also necessary for the quantity 1 - B / r  which appears in the exterior metric 
to be positive for all values of R 2 R,, a requirement that entails 

In the limit a = a2,  goo vanishes at the shell r = R, because, when a = a2,  B = R, .  
Consequently, in a sequence of static configurations an event horizon forms at r = R ,  
when a = a2 since the surface goo = 0 is an event horizon in static spherical geometries 
(Israel 1967~).  As the scalar field is not constant outside the horizon, the solution 
represented here is not the Schwarzschild solution and consequently the event horizon 
is singular. This is a result of the fact that the Schwarzschild solution is the only static 
spherical vacuum solution of the Brans-Dicke field equations that possesses a non- 
singular event horizon (Johnson 1972). The solution with a = a2 thus represents a 
naked singularity. 

It is a simple matter to verify that the event horizon is singular by calculating the 
physical components R ( u ) ( p l ( V ) ~ G l  of the Riemann tensor at r = R,. If any of these are 
singular, the event horizon is singular. For the metric ( 5 6 )  a typical physical component 
is 

R'0'(2)(0)(2) = -2B["-B)2+2BC]r3(r+B)2'C-3'(r-B)-2'C''i (71) 
Y 

where C = (A  - A  - l)/A. When a = a2,  C + 1 can be written as 

c+1=-[2-(r) w + l  2 0  ] 
w+2 w + 3  

which satisfies C + 1 > 0 for all values of w in the range - 1 < w <CO. The exponent 
of r - B in expression (71) is thus negative, with the result that the horizon is singular. 
All other non-zero physical components R(u)(p)(V)(G) are also singular at r = R, except 
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in the general relativity limit w + 00, in which case all physical components are finite 
everywhere except at r = 0. 

A further limit on a can be obtained by considering the relation between p and 
a. It follows from equations (67) and (68) that p and cr are related by 

1 1 + ( w + 2 ) A  
’ = T  1 - ( w + l ) A  

which may be regarded as an equation of state. In the limit w + 00 this expression 
reduces to the general relativity result 

a 
p = 2 ( 1 - O c r  

and in the weak-field limit a << 1 it follows, as expected, that p << a. The speed at 
which small disturbances propagate over the shell is 

us = (dp)’”-[’ - - 1+(w+2)AIi iZ 
d a  2 l - ( w + l ) A  

which must not exceed unity. From this expression, vs  S 1 when a satisfies 

2(3w +4)  
9w + 4  

a s  = a,(w) 

which coincides with the dominant energy condition a > p .  In the general relativity 
limit the inequality (72) becomes a < 2/3 or R, > 3M/4, in agreement with Lightman 
et a1 (1975, problem 16.15). 

The final quantity we consider is the redshift of a photon emitted from the surface 
of the shell and received at infinity. This is given by 

l+aA ‘ I A  
z s =  - - 1  

( 1  -aA) 

and has the general relativity limit z s  = 2a/ ( l  -a). 
To see which of the above limits on a is the strongest for a given value of the 

Dicke coupling constant w, expressions (69), (70) and (72) are plotted as functions of 
w in figure 1 .  For w > 13/4, cy3(w)< a 2 ( w )  holds so that a s a3 is the strongest 
condition. That is, when w > 13/4 a sequence of static shells with increasing a 
becomes acausal before the naked singularity configuration is reached. This is, of 
course, the situation for the experimentally allowed range of w. When w < 13/4 a 
naked singularity is reached before os exceeds unity. It is only for the value U = 2 
that the limit a s a l ( w )  is relevant, because a l ( w ) > a 2 ( w )  holds for all values of w 
except w = 2, at which point cy = a2. 

Also plotted in figure 1 is the surface redshift zs evaluated for shells with a = a 3 ( w ) .  
This redshift is infinite when w = 13/4 (the naked singularity configuration) and 
decreases monotonically with increasing w to the general relativity limit zs = 4 when 
w + m .  

5. Summary and conclusions 

We have derived here the junction conditions and equations of motion in an invariant 
form for uncharged singular time-like hypersurfaces in the Brans-Dicke theory of 
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Figure 1. The shell parameter a = M / 2 R +  is constrained by the three limits a G a , ( w ) ,  
a < a 2 ( w )  and a s a 3 ( w )  where a,, a2 and a3 are defined by equations (69), (70) and (72) 
respectively. See the text for an explanation of these limits. The figure displays a,, a2 
and a) as functions of the Dicke coupling constant w, and also shows the redshift z, of a 
photon emitted from the surface of the shell and received at infinity, for shells with a = a3. 

gravity. The derivation was based on the methods developed by Israel (1966) for 
singular uncharged hypersurfaces in general relativity, and by Kuchai (1968) for 
charged hypersurfaces. The junction conditions-equations (7), (23), (27) and (42)- 
(45)descr ibe  how the scalar field and the gravitational field change across the 
hypersurface, and the equations of motion-equations (50) and ( 5  1 ) d e s c r i b e  how 
the hypersurface moves through space-time. Since there is no direct coupling between 
matter and the scalar field in the Brans-Dicke theory, some of the junction conditions 
and some of the equations of motion have forms identical to those in general relativity. 

In 9 4  we presented an exact solution of the Brans-Dicke field equations which 
represents a static spherical shell of perfect fluid. Space-time is flat inside the shell 
and all the constants which appear in the Brans type I solution for the gravitational 
field outside the shell are expressed in terms of the single parameter a =M/2R+.  
Here M is the total mass-energy of the shell and R ,  is the coordinate radius (in 
isotropic coordinates), as measured from outside the shell. 
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